Mathématiques

Question

on suppose que g(x)  est de la forme: g(x)= a lnx + b/x où a et b sont des nombres réels. 

* calcluer g'(x) en fonction de a et b 

*déterminer a et b 

*on suppose que a =1 et b=-1. monter qu'il existe un unique réel s dans ]0;+ l'infini[ tel que lnx= 1/s et que 1,7<s<1,8

*en déduire le signe de g(x) suivant les valeurs de x dans l'intervalle précédent  

1 Réponse

  • on suppose que g(x)  est de la forme: g(x)= a lnx + b/x où a et b sont des nombres réels. 

     

     

    * calcluer g'(x) en fonction de a et b 

    g'(x)=a/x-b/x²

     

     

    *déterminer a et b 

    on utilise les renseignements de l'énoncé...

     

     

    *on suppose que a =1 et b=-1. monter qu'il existe un unique réel s dans ]0;+ l'infini[ tel que lnx= 1/s et que 1,7<s<1,8

    f(x)=ln(x)-1/x

    f'(x)=1/x+1/x²>0

    donc f est croissante sur IR+*

     

    d'apres le th des valeurs intermédiaires, il existe un unique s tel que f(s)=0

    donc s vérifie : ln(s)=1/s avec 1,7<s<1,8

     

    *en déduire le signe de g(x) suivant les valeurs de x dans l'intervalle précédent

    * si x<s alors f(x)<0

    * si x=s alors f(x)=0

    * si x>s alors f(x)>0

Autres questions